4,349 research outputs found

    Factors of Micromanipulation Accuracy and Learning

    No full text
    Micromanipulation refers to the manipulation under a microscope in order to perform delicate procedures. It is difficult for humans to manipulate objects accurately under a microscope due to tremor and imperfect perception, limiting performance. This project seeks to understand factors affecting accuracy in micromanipulation, and to propose strategies for learning improving accuracy. Psychomotor experiments were conducted using computer-controlled setups to determine how various feedback modalities and learning methods can influence micromanipulation performance. In a first experiment, static and motion accuracy of surgeons, medical students and non-medical students under different magniification levels and grip force settings were compared. A second experiment investigated whether the non-dominant hand placed close to the target can contribute to accurate pointing of the dominant hand. A third experiment tested a training strategy for micromanipulation using unstable dynamics to magnify motion error, a strategy shown to be decreasing deviation in large arm movements. Two virtual reality (VR) modules were then developed to train needle grasping and needle insertion tasks, two primitive tasks in a microsurgery suturing procedure. The modules provided the trainee with a visual display in stereoscopic view and information on their grip, tool position and angles. Using the VR module, a study examining effects of visual cues was conducted to train tool orientation. Results from these studies suggested that it is possible to learn and improve accuracy in micromanipulation using appropriate sensorimotor feedback and training

    Quarkonium formation time in quark-gluon plasma

    Get PDF
    The quarkonium formation time in a quark-gluon plasma (QGP) is determined from the space-time correlator of heavy quark vector currents using the quarkonium in-medium mass and wave function obtained from heavy quark potentials extracted from the lattice QCD. It is found that the formation time of a quarkonium increases with the temperature of the QGP and diverges near its dissociation temperature. Also, the quarkonium formation time is longer if the heavy quark potential is taken to be the free energy from lattice calculations for a heavy quark pair, compared to that based on the more negative internal energy.Comment: 5 pages, 4 figure

    Quarkonium formation time in relativistic heavy-ion collisions

    Get PDF
    We calculate the quarkonium formation time in relativistic heavy-ion collisions from the space-time correlator of heavy quark vector currents in a hydrodynamics background with the initial nonequilibrium stage expanding only in the longitudinal direction. Using in-medium quarkonia properties determined with the heavy quark potential taken to be the free energy from lattice calculations and the fact that quarkonia can only be formed below their dissociation temperatures due to color screening, we find that Ξ₯\Upsilon(1S), Ξ₯\Upsilon(2S), Ξ₯\Upsilon(3S), J/ψJ/\psi and Οˆβ€²\psi^\prime are formed, respectively, at 1.2, 6.6, 8.8, 5.8, and 11.0 fm/c after the quark pair are produced in central Au+Au collisions at the top energy of Relativistic Heavy Ion Collider (RHIC), and these times become shorter in semi-central collisions. We further show, as an example, that including the effect of formation time enhances appreciably the survivability of Ξ₯\Upsilon(1S) in the produced hot dense matter.Comment: 6 pages, 4 figure

    J/ψJ/\psi production and elliptic flow in relativistic heavy-ion collisions

    Full text link
    Using a two-component model for charmonium production, which includes contributions from both the initial hard nucleon-nucleon scattering and from the regeneration in the quark-gluon plasma, we study the nuclear modification factor RAAR_{AA} and elliptic flow v2v_2 of J/ψJ/\psi in relativistic heavy ion collisions. For the expansion dynamics of produced hot dense matter, we introduce a schematic fireball model with its transverse acceleration determined from the pressure gradient inside the fireball and azimuthally anisotropic expansion parameterized to reproduce measured v2v_2 of light hadrons. We assume that light hadrons freeze out at the temperature of 120 MeV while charmonia at 160 MeV, similar to the kinetic and chemical freeze-out temperatures in the statistical model, respectively. For the properties of charmonia in the quark-gluon plasma, we use the screening mass between their charm and anticharm quarks and their dissociation cross sections given by the perturbative QCD (pQCD) in the leading order and up to the next-to-leading order, respectively. For the relaxation time of charm and anticharm quarks in the quark-gluon plasma, we also use the one calculated in the leading order of pQCD. Modeling the effect of higher-order corrections in pQCD by introducing multiplicative factors to the dissociation cross section of charmonia and the elastic scattering cross sections of charm and anticharm quarks, we find that this effect is small for the RAAR_{AA} of J/ψJ/\psi as they suppress the number of initially produced J/ψJ/\psi but enhance the number of regenerated ones. The higher-order corrections increase, however, the v2v_2 of J/ψJ/\psi. Our results suggest that the v2v_2 of J/ψJ/\psi can play an important role in discriminating between J/ψJ/\psi production from the initial hard collisions and from the regeneration in the quark-gluon plasma.Comment: 15 pages, 14 figure

    Heavy baryon/meson ratios in relativistic heavy ion collisions

    Get PDF
    Heavy baryon/meson ratios Ξ›c/D0\Lambda_c/D^0 and Ξ›b/BΛ‰0\Lambda_b/\bar{B}^0 in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks as well as with bounded light diquarks that might exist in the strongly coupled quark-gluon plasma produced in these collisions. Including the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence, the resulting Ξ›c/D0\Lambda_c/D^0 and Ξ›b/BΛ‰0\Lambda_b/\bar{B}^0 ratios in midrapidity (∣yβˆ£β‰€0.5|y|\le 0.5) from central Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV are about a factor of five and ten, respectively, larger than those given by the thermal model, and about a factor of ten and twelve, respectively, larger than corresponding ratios in the PYTHIA model for pppp collisions. These ratios are reduced by a factor of about 1.6 if there are no diquarks in the quark-gluon plasma. The transverse momentum dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass, with the Ξ›b/BΛ‰0\Lambda_b/\bar{B}^0 ratio being much flatter than the Ξ›c/D0\Lambda_c/D^0 ratio. The latter peaks at the transverse momentum pT≃0.8p_T^{} \simeq 0.8 GeV but the peak shifts to pT≃2p_T^{} \simeq 2 GeV in the absence of diquarks.Comment: 11 pages, 2 figure

    Contributions of hyperon-hyperon scattering to subthreshold cascade production in heavy ion collisions

    Get PDF
    Using a gauged flavor SU(3)-invariant hadronic Lagrangian, we calculate the cross sections for the strangeness-exchange reactions YY to N\Xi (Y=\Lambda, \Sigma) in the Born approximation. These cross sections are then used in the Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) transport model to study \Xi production in Ar+KCl collisions at incident energy of 1.76A GeV and impact parameter b=3.5 fm. We find that including the contributions of hyperon-hyperon scattering channels strongly enhances the yield of \Xi, leading to the abundance ratio \Xi^{-}/(\Lambda+\Sigma^{0})=3.38E-3, which is essentially consistent with the recently measured value of (5.6Β±1.2βˆ’1.7+1.8)Γ—10βˆ’3(5.6 \pm 1.2_{-1.7}^{+1.8})\times 10^{-3} by the HADES collaboration at GSI.Comment: 8 pages, 5 figure
    • …
    corecore